书阅啦

手机浏览器扫描二维码访问

第一百三十一章 泰勒公式微积分(第1页)

18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒(BrookTaylor),于1685年8月18日在英格兰德尔塞克斯郡的埃德蒙顿市出生。

1701年,泰勒进剑桥大学的圣约翰学院学习。

1709年后移居伦敦,获得法学学士学位。

1712年当选为英国皇家学会会员,同年进入促裁牛顿和莱布尼兹发明微积分优先权争论的委员会。并于两年后获法学博士学位。

从1714年起担任皇家学会第一秘书,1718年以健康为由辞去这一职务。

1717年,他以泰勒定理求解了数值方程。

泰勒以微积分学中将函数展开成无穷级数的定理着称于世。

泰勒在无聊的玩GeoGebra,里面有个公式:

Y=A0+A1x+A2x^2+A3x^3+A4x^4+A5x^5+A6x^6+A7x^7+A8x^8+A9x^9

然后无聊的拨弄着滑动条来随意改变这些个A值。屏幕上函数图像不断变化着,但那线条总是歪七八扭,不听使唤。他认真了起来,扩大了A值的范围和精度,逐渐找到规律之后,他已经能够调出剑尖,牙齿,猫耳等图像。

他不断增加项数,调整参数,他发现增加的项数越多,他就越能掌控图像的变化。

他像扭铁丝似的上下弯折着曲线,无意中调出了一段波浪形的图像,看着似乎挺眼熟……

——这不是sin函数吗!

他抑制不住自己的兴奋,赶紧输入了标准的sin函数进行对比,同时继续调整多项式,使这个山寨函数尽可能地贴近正品。

他仔细端详着,单看眼前这一段,简直可以以假乱真,不过越到后面,分歧也就越明显了。

他猛然意识到:“我能够控制多项式画出任意图像!甚至把它伪装成其他函数!“

但是他很快冷静了下来,问了自己一连串的问题:所谓的任意,可以是无限制的任意吗?我能否完美地“伪装“出一个目标函数?如果不能,那又能够伪装到何种程度?摆在眼前的具体问题就是,能否“伪装“出一个完美的sin函数?

他决定一探究竟。如果存在某n次多项式等于sin(x);则其导函数也等于sin(x)的导函数;它的二阶导也等于sin(x)的二阶导;它的三阶导也等于sin(x)的三阶导;

……它的n阶导也等于sin(x)的n阶导。

可是,每求导一次,多项式就会降一阶。

求到n阶导不就变成常数了吗?

至尊战皇  穿到八零,我自带锦鲤系统!  国运:拥有多重身份的我很合理吧  混迹娱乐圈的日子  暗无  玄灵界都知道我柔弱可怜但能打  在下潘凤,字无双  译文欣赏:博伽瓦谭  我一枪一剑杀穿大陆  穿成商户女摆烂,竟然还要逃难!  大明:开局气疯朱元璋,死不登基  重生在宝可梦,我的后台超硬  快穿之炮灰得偿所愿  新人驾到  农夫是概念神?三叶草了解一下!  宗门全是美强惨,小师妹是真疯批  哦豁!虐文炮灰不干了!  永恒大陆之命运  我的徒弟不对劲  摊牌了,我爹是绝顶高手!  

热门小说推荐
艳魂咒飘零的风

艳魂咒飘零的风

一个失业失恋的落魄男子,遇上一个奇怪的老人,加上一个奇怪的项链之后,金钱,美女,似乎全都是从天而降,而事情却又没有这么简单,这一切,需要有魂灵去修炼!...

苏狂

苏狂

下载客户端,查看完整作品简介。...

快穿:我只想种田

快穿:我只想种田

别被书名骗了,取名废,其实就是女强无CP,村姑背景系统逆袭流,也俗称慢穿泥石流,凶杀末世武侠仙侠魔法啥都有,还有,新书820不见不散。官方群满一千粉丝值进(五九零六五三四八三)后援群,满一万粉丝值进VIP群。PS本文无CP...

绝代名师

绝代名师

市二中的金牌老师孙默落水后,来到了中州唐国,成了一个刚毕业的实习老师,竟然有了一个白富美的未婚妻,未婚妻竟然还是一所名校的校长,不过这名校衰败了,即将摘牌除名,进行废校处理孙默的开局,就是要帮助未婚妻坐稳校长之位,让学校重回豪门之列。孙默得到绝代名师系统后,点废成金,把一个个废物变成了天才,在孙默的指导下,学渣...

华娱特效大亨

华娱特效大亨

新书我的特效时代上传,求收藏,求推荐!落魄功夫小生陆麟,拥有一台能做出炫酷特效的超级电脑。从此华语影片不在是低成本小制作的代名词。奇幻瑰丽的仙侠世界登上银幕,沉迷华夏网文的外国小哥,不再期待漫威!书友群481993635...

仙门弃少

仙门弃少

被家族抛弃,被仇敌废掉的少年商浩,在走投无路时,救了两个人,然后,他发现自己有了异能故事从帮助一个村子脱贫致富展开。各位书友要是觉得仙门弃少还不错的话请不要忘记向您QQ群和微博里的朋友推荐给力文学网哦!...

每日热搜小说推荐