书阅啦

手机浏览器扫描二维码访问

第243章 本征宇宙的命运(第1页)

当看到这么多一级文明大世界的恒星和星系团的命运竟然是这样的,你是什么感觉?

就跟我们对待大海里的珍珠一样的命运,到了二级文明大世界的环境就是一个装饰品的命运。

在走到一处门店前时,我们看到一颗类似地球的玩意,因为在黑洞超级大的重力环境中,本来直径几万公里的球体,在这里,只有篮球大小的一颗,还被这些海族用一根海龙筋穿透,像单摆一样挂在一个装饰精美的门架上,来回的摆动着,运动轨迹如下:

单摆的常微分方程推导

单摆的运动可以通过牛顿第二定律来描述,该定律表明物体的加速度与作用在物体上的合外力成正比,并与物体的质量成反比。对于单摆,当摆角较小(通常小于10°)时,可以将摆球的运动简化为沿着圆弧路径的简谐运动。在这种情况下,可以将重力分解为两个分量:一个沿圆弧切线方向的分量,提供恢复力;另一个垂直于切线方向的分量,提供向心力。

牛顿第二定律的应用

设单摆的长度为(L),摆球的质量为(m),重力加速度为(g),摆角为(theta)(以弧度为单位),则重力沿圆弧切线方向的分量为(mgsin(theta))。根据牛顿第二定律,这个分量产生的加速度(a)可以表示为:

[ma=mgsin(theta)]

由于(a=Lfrac{d^2theta}{dt^2}),可以将上述表达式重写为:

[mLfrac{d^2theta}{dt^2}=mgsin(theta)]

简化得到单摆的常微分方程:

[frac{d^2theta}{dt^2}=-frac{g}{L}sin(theta)]

小角度近似

当摆角(theta)非常小,即(sin(theta)approxtheta)时,可以进一步简化上述微分方程为:

[frac{d^2theta}{dt^2}=-frac{g}{L}theta]

这是一个典型的简谐运动的微分方程,其解是一个角位移与时间的正弦(或余弦)函数。

能量守恒法

另一种推导单摆微分方程的方法是基于能量守恒定律。在没有非保守力(如空气阻力)的情况下,单摆的总机械能(动能加势能)是守恒的。通过设置动能和势能的表达式,并应用能量守恒定律,可以得到同样的微分方程。

以上是单摆常微分方程的基本推导过程。在实际应用中,这个方程可以用于分析单摆的运动特性,包括周期、振幅等参数的计算.

若是你不好理解,那么接下来我更进一步给你解释一下:

单摆常微分方程的详细叙述

单摆的运动可以通过多种不同的数学模型来表达,每种模型都从不同的物理视角出发,揭示单摆运动的本质。以下是对之前列出的8种单摆常微分方程形式的详细叙述:

牛顿第二定律形式:[ddot{theta}+frac{g}{L}sin(theta)=0]这是最基本的单摆微分方程,它直接来源于牛顿第二定律,描述了摆角随时间变化的二阶微分方程。

拉格朗日形式:[frac{d}{dt}left(frac{partialt}{partialdot{theta}}right)-frac{partialt}{partialtheta}+frac{partialV}{partialtheta}=0]这里(t=frac{1}{2}mL^2dot{theta}^2)是动能,(V=-mgLcos(theta))是势能。拉格朗日方程通过能量的视角来描述单摆的运动。

哈密顿形式:[dot{p}=-frac{partialh}{partialtheta},quaddot{theta}=frac{partialh}{partialp}]其中(h=frac{1}{2}mL^2dot{theta}^2-mgLcos(theta))是哈密顿量,(p=mLdot{theta})是角动量。哈密顿方程在动力学中用于描述系统的演化。

角动量守恒形式:[mL^2ddot{theta}=-mgLsin(theta)]这是基于角动量守恒原理的单摆微分方程,直观地展示了力矩与角加速度的关系。

能量守恒形式:虽然能量守恒方程本身不是微分方程,但在无阻尼情况下,能量守恒定律可以用来推导单摆的运动方程。能量(E=frac{1}{2}mL^2dot{theta}^2-mgLcos(theta))在无外力作用下应保持不变。

复数形式:通过引入复数(z=e^{itheta}),可以将单摆方程转化为复数域中的形式。虽然在经典力学中较少见,但在某些特定分析中,这种形式可能更便于处理。

拉普拉斯变换形式:通过拉普拉斯变换,单摆的微分方程可以转化为代数方程。例如,设(theta(s)=mathcal{L}{theta(t)}),则有:[s^2theta(s)-stheta(0)-dot{theta}(0)+frac{g}{L}mathcal{L}{sin(theta)}=0]这种形式在控制系统分析和设计中非常有用。

相位空间形式:在相位空间中,单摆的运动可以表示为一个点在相位平面上的轨迹,相位平面的横坐标是角位置(theta),纵坐标是角速度(dot{theta})。相位空间的微分方程是上述微分方程的另一种可视化表示,它有助于理解系统的动态特性。

这些不同的形式提供了从不同角度理解单摆运动的工具,选择哪种形式取决于具体问题的需求和分析方法的偏好。每种形式都有其独特的物理意义和数学优势,能够帮助我们更全面地理解单摆的运动特性。

肆意招惹:炽爱小玫瑰  开局躺棺配阴婚?送你全家去流放  死亡永久加属性,阁下如何应对?  七时幻  霸道邪少,有点坏  二十五岁才激活神豪系统?  相亲节目表白被拒,逮捕女嘉宾  从生子到女娲分娲的成神之路  王爷,你家公主又出去拼命了  逃荒:我靠美食交换系统极限求生  综漫甜辣各一半  重生之善恶人间  修行界的杀手  重生:我被老婆倒追了  来点超能力:美羞要拯救世界  历史直播:开局盘点政哥的小八卦  综武之我不是完颜康  跨异界联合王国  娘亲快跑,爹爹能听到你的心声  逍遥酿酒师  

热门小说推荐
篮坛第一外挂

篮坛第一外挂

林易先是用Crossover在三分线弧顶晃开了防守人的重心,紧接着用山姆高德过掉了补防的阿里扎,哇靠!不看人传球,队友空了!不,队友选择高抛,漂亮的空中接力!等等,怎么有点奇怪呢?因为完成以上动作的是一位七尺大个。这是一段热血沸腾的篮球故事。书友群484028022,欢迎大家进群聊天!...

逍遥潜龙(龙游艳界)

逍遥潜龙(龙游艳界)

一个无父无母的孤儿,一个被最有钱的女人领养的孤儿可是自卑彷徨的他却喜欢上了跟自己身份截然不同的人。可惜他却在跟最有钱的女董事长发生不能说的秘密之后一切都变了。各色各样的大小美人纷扰而至,围绕在他的身边!成熟美艳,清纯可爱,性感妩媚,柔情万千最后的最后,他凭借着自己的能力,在那多少美人美妇的陪伴之下,在这一片弱肉强食的世界之中创下了一个伟大的奇迹!...

重生最强妖兽

重生最强妖兽

系统流爽文古有黑蟒,百年后化腾蛇,千年后变蛟,万年后化龙,可遨游九天十地,统领六合八荒。三千年前,人族仙尊林昊斩妖无数,却遭逆徒暗算,被人族围攻致死。三千年后,林昊重生于一条黑蟒身上,以妖证道,开启了一段逆天化龙之路。书友群565412325...

美梦时代

美梦时代

为了救一个小女孩,刚刚毕业的萧奇博士,从美国穿越回了八年前的中国,回到了自己的高中时代。重生之后,萧奇紧接着要做的,就是要帮忙性格淡然又才华出众的父亲,至少从副科级小官连升七级,青云直上,坐到副省级高官的位置,才不枉费了父亲一辈子的正直和善良。对于前世辜负和错过的女孩子,萧奇也下了决心,一定要努力给予她们幸福,不要...

史上最强赘婿

史上最强赘婿

已完本穿越异世成为财主家的小白脸赘婿,因太废物被赶出来。于是他发奋图强,找一个更有权有势绝美高贵的豪门千金做了上门女婿。练武是不可能练武的,这辈子都不可能练武,只能靠吃软饭才能维持生活!我要把老婆培养成天下第一高手,谁敢惹我就让我娘子打死你!...

天命修罗

天命修罗

人无耻则无畏,人至贱则无敌!谁说盖世枭雄必需得霸气十足?谁说无耻贱圣踏不得七彩祥云?谁说此般少年不能争天命,演修罗,替天行道?(QQ书友群313310371)...

每日热搜小说推荐