书阅啦

手机浏览器扫描二维码访问

第四百九十九章 kam定理非线性力学(第1页)

柯尔莫哥洛夫对阿诺德说:“我开始想关于n体力学的问题,我们未来在研究动力学系统的时候,必须要面对这个严肃的问题。”

阿诺德说:“n体问题属于不可积分的难题,只能寻求级数解。换言之,这类系统无法根据初始条件求出描述系统未来确定性行为的精确解。力学系统一般说来不可积分,可积分系统只是极少的特例,并指出共振项可能影响级数的收敛性。”

柯尔莫科洛夫说:“我们要研究弱不可积系统问题。”

阿诺德说:“哈哈,柿子捡软的捏。”

柯尔莫哥洛夫说:“在扰动较小也可以说非线性程度比较小、V足够光滑、离开共振条件一定距离等三个条件下,对于绝大多数初始条件,弱不可积系统的运动图像与可积系统基本相同。”

阿诺德说:“在满足一定条件下近可积系统绝大多数解是规则的,其相轨迹被限制在一个由n个运动不变量决定的n维环面上,该环面与可积系统的环面相比有微小的变形,但拓扑结构不变,称为不变环面;确切些说,相空间分成大小两组体积非零的区域。”

柯尔莫哥洛夫说:“在大区域中仍然保持着与可积系统类似的环面结构;也有一些“随机”解,但被限制在环面之间,成为“随机”层。”随机二字打上引号表示并非真正的随机,而是因为系统的性态随初值的敏感而呈现混乱,这仍然是混沌现象的决定性的表现

阿诺德说:“因此,近可积系统与可积系统的解相差不多,这时确定性与“随机性”共存。”

柯尔莫哥洛夫说:“当然,随着摄动的加大,上述条件受到破坏,我说的这个不再适用。分隔相邻“随机”层的环面将逐个破裂,“随机”层也相应变大,这时系统的所有可能解中大部分都是混沌解。”

阿诺德说:“轨道的不稳定性是力学系统运动中出现随机性、不可预言性和混沌的原因。”

Kolmogorov在1954年世界数学家大会上指出:非退化的可积系统在保守的微小扰动后,虽然某些不变环面一般说来会被扰动破坏掉(称为共振环面),但仍会有相当多的环面被保存下来,也就是说整个相空间中仍然有许多的相流的运动是非常简单的(直观地,可以想象二维平面虽然没有被同心圆分层,但仍有许许多多的同心圆保存了下来,每个圆上的相流都共扼于一个旋转,只是相邻的两个同心圆之间相流的运动会比较复杂一些)。

阿诺德后来与德国数学家Moser也开始通信讨论这个问题。

Moser说:“不可积的哈密顿系统又是什么样子?”

阿诺德说:“直到现在也不完全清楚,也许永远也搞不清。但是由已知的东西出发探索未知的方法提醒我们应该先去了解充分接近可积的系统是什么样子。”

Moser说:“我们现在准备试图证明这个定理。”

阿诺德说:“有什么好的办法码?”

Moser说:“用牛顿迭代的办法了。就是找一系列的典则变换,不破坏哈密顿方程的式,一步步地变换近可积的系统使之越来越靠近一个可积系统,只要对参数的大部分点能做到就行。由于在迭代过程中会出现所谓的“小分母”,用通常的牛顿迭代法无法保证最终无穷多步变换的复合收敛,但利用改进的牛顿迭代方法克服了小分母带来的麻烦,从而完成了定理的证明。”

阿诺德说:“这个办法不错。”

Moser说:“Sigel也对这个工作感兴趣,他在考虑圆周映射的线性化时,也曾提出过类似的证明思想,我在降低该理论对可微性的要求上又作出了一些重要的工作。”后来,JohnNash在他证明有关黎曼嵌入的论文中,也用到了类似的迭代方法(当然是独立完成,甚至可能早于Moser),于是,后人又把他们的证明方法叫做Nash-Moser迭代。

阿诺德说:“曾经的遍历性假设是猜测:通有的哈密顿系统,相流是遍历的。如果按照我的理论,遍历性假设不攻自破?由于可积系统不是通有的系统,一般的系统都是不可积的,因此由相流不遍历的可积系统并不能否定遍历性假设,但是我们知道近可积系统却是通有的。如果我们考虑4维的相空间,其等能面是三维的,如果该近可积的系统有不变二维环面存在,则此环面必将能量面的其余部分分割为不连通的两块,相流不可能从环面一边跑道另一边,所以也就不会有何遍历性可言。”

Moser笑说:“不知道当年Fermi是怎么证明了遍历性假设的。不过据说他开密码锁也是一把好手。”Fermi当年的工作恰恰发现了不遍历性。说的是他搞了一批耦合谐振子,原来觉得能量可以自由的在自由度之间流动,最终达到玻尔兹曼分布。结果后来发现根据初始条件不同,能量卡在若干个自由度之间来回变,永远不会达到玻尔兹曼分布。验证了动力系统中,遍历性假设不是先天靠谱的。

阿诺德说:“我在想,共振环面破裂后到底会怎样?”

Moser说:“这个问题仍没有完全解决。目前大家都比较清楚的是:一般会有较低维数的环面存在,分椭圆环面,双曲环面等,,也就是说仍然还有比较规则的相曲线;同时还会有一些很不规则的轨线,有人称之为Mather集;甚至还有所谓的“马蹄”。”

KAM理论,不仅是Kolmogorov定理本身,还包括为证明该定理所发展的一系列方法,该理论诞生至今虽已近半个世纪,但仍在不断的发展和完善中。它所应用的范围也不仅限于哈密顿系统,对于可逆系统,保体积映射,以及无穷维哈密顿系统(包括一些特殊的偏微分方程)都发展出了相应的KAM理论。甚至可以说,凡是有小分母出现的地方,就是KAM大显身手之处。

喜欢数学心请大家收藏:()数学心

至尊战皇  玄灵界都知道我柔弱可怜但能打  宗门全是美强惨,小师妹是真疯批  快穿之炮灰得偿所愿  我的徒弟不对劲  新人驾到  农夫是概念神?三叶草了解一下!  我一枪一剑杀穿大陆  穿成商户女摆烂,竟然还要逃难!  暗无  译文欣赏:博伽瓦谭  重生在宝可梦,我的后台超硬  大明:开局气疯朱元璋,死不登基  摊牌了,我爹是绝顶高手!  永恒大陆之命运  穿到八零,我自带锦鲤系统!  在下潘凤,字无双  哦豁!虐文炮灰不干了!  混迹娱乐圈的日子  国运:拥有多重身份的我很合理吧  

热门小说推荐
师娘,借个火(师娘,别玩火)

师娘,借个火(师娘,别玩火)

师父死了,留下美艳师娘,一堆的人打主意,李福根要怎么才能保住师娘呢?...

无敌从满级属性开始

无敌从满级属性开始

穿越成修真世界的一个废柴,那还修你妹的真?一道七彩霞光之后,杨真直接吊炸天了!他看过的功法,直接满品满级,学都学不完!他炼制的丹药,不但起死回生,还能青春永驻!他锻造的武器,上打神王大帝,下捅黄泉幽狱,每一件都让天地颤栗,让神魔退避!我杨真从不装逼,因为我真牛的一批!一群542062672(已满)二群...

天美地艳男人是山

天美地艳男人是山

从农村考入大学的庾明毕业后因为成了老厂长的乘龙快婿,后随老厂长进京,成为中央某部后备干部,并被下派到蓟原市任市长。然而,官运亨通的他因为妻子的奸情发生了婚变,蓟原市急欲接班当权的少壮派势力以为他没有了后台,便扯住其年轻恋爱时与恋人的越轨行为作文章,将其赶下台,多亏老省长爱惜人才,推荐其参加跨国合资公司总裁竞聘,才东山再起然而,仕途一旦顺风,官运一发不可收拾由于庾明联合地方政府开展棚户区改造工程受到了中央领导和老百姓的赞誉。在省代会上,他又被推举到了省长的重要岗位。一介平民跃升为省长...

我的绝美御姐老婆

我的绝美御姐老婆

聚焦巅峰火爆畅销他是世界闻名的巅峰杀手,却被家族逼婚,与美女总裁住在了一起。彼此看不顺眼却又不得不同居,萧凡决定回学校散散心,可是...

极品仙师

极品仙师

市一高新丁黄景耀因得罪骨干教师被恶意针对,不堪受辱辞职后意外得到仙家至宝。重新执教县一高,左手录运簿册掌天下文章,可查看每一个学生学习天赋,提升天赋。右手文昌大印掌考场气运,财富官运。教师以教育水平和升学率为本,黄景耀渐渐发现他的本钱雄厚的有些令人发指,一次次撼动整个教育界,又远不止单一的教育界。...

医流武神

医流武神

一代魔君,逆天重生!为复血海深仇,重回都市,掀起血雨腥风!当其锋芒展露的刹那,美女院长,萌呆萝莉,清纯校花,冷艳总裁纷至沓来!...

每日热搜小说推荐