手机浏览器扫描二维码访问
公元前1650年左右的古埃及数学典籍《莱因德数学纸草书》,其中记录了古埃及人如何将有理数表示为单位分数之和。
这里有{2,3,7,12,15,18,21,29,32,36}10个数字组成的一个数集,我们可以选择其中的2、3、12、18、36,就能得到12+13+112+118+136=1。
单位分数就是分子是1的分数,或者也可以说是正整数的倒数,它们是当时古埃及数字系统中唯一一类分数,他们需要用单位分数来表示其他更复杂的分数,比如将34写作12和14的和。
到了20世纪70年代,有关这类分数的问题再次引起了一些数学家的兴趣。当时,数学家埃尔德什(PaulErd?s)和格雷厄姆(RonaldGraham)在探索想要设计出不满足条件的整数集有多难,也就是说,一个整数集中不能有任何子集,其倒数之和等于1。
如果A是N的子集,A具有正密度,那么存在有限的S是A的子集,使得其中数的倒数和为1。在此,数集A是自然数集的子集,无论你怎么数下去,都存在一种非零的概率,会遇到集合A中的一个数字,那么A就具有正密度。
猜想提出约半个世纪后,牛津大学数学家ThomasBloom证明了它。
举个简单的例子,A是一个包含所有大于1的奇数的集合,它属于自然数集的子集,并满足正密度的条件,因为无论你数到10亿还是100亿,也一定会遇到奇数。然后,我们可以在A中找到有限子集S={3,5,7,9,11,33,35,45,55,77,105},而所有这些数的倒数相加恰好等于1。
这理解起来并没有那么困难,但证明它显然就变成另一回事了。那就变成了一个大得多、复杂得多的问题。对不少数学家来说,似乎找不到什么显而易见的数学工具来解决它。
数学家ErnieCroot,他解决了所谓的埃尔德什-格雷厄姆问题的着色版本。
这是一种更弱的证明。可以这么理解,在着色版本中,整数被随机地分类,指定放到不同颜色的桶中。猜想预测,无论这种分类中用到了多少个桶,至少会有一个桶包含一个倒数之和等于1的整数子集。
Croot这篇发表于2003年的论文引入了来自调和分析的强大的新方法,那是一个与微积分密切相关的数学分支。
着色版本和密度版本非常相似,但它们在一个非常重要的方面却有所不同。在着色问题中,整个数集A被分成了不同的“桶”,具体的分割方法并不重要。数学家要证明的是,有一个“桶”里的数字满足条件。这正是Croot在论文里构建的证明,表明了至少会有一个“桶”里包含足够多具有低素因子的数字,用数学术语来说就是光滑数(smoothnumber),从而满足定理。
这可以看作证明的一条捷径,但在密度版本中,这样的捷径并不存在。当Bloom看到这篇证明后,却认为这种方法要比人们普遍认为的更强,那实际上证明了密度问题的一个特例。Bloom谦虚地表示,他所做的“只是又推了一下那扇已经打开的门”。
粗略来说,先前的证明依赖于一类被称为指数和的整数。指数和可以分成两个部分,分别是优弧贡献,也就是我们可以明确计算并且很大的部分,以及劣弧贡献,也就是我们不知道如何计算,但能证明很小的部分。
先前证明的巧妙之处在于,Croot想到了一种思考劣弧贡献的新方法,把它变成了一类不同的问题。他没有试图计算数值,而是研究了这个集合中倍数是如何沿着数轴分布的。
在此基础上,Bloom将它进一步改进成适用于密度版本,进行了更多“局部”处理。在Bloom的新论文中,他将自己的方法解释为“Croot引入的方法的一种更强形式”。
同时,Bloom没有直接寻找倒数之和为1的答案,而是先找到了倒数相加更小的数集,然后再把它们当作“零件”,最终构建出想要的答案。这进一步帮助简化了过程。
Bloom的新证明受到了许多数学家的赞赏,但这显然不是数集与和的问题探索的终点。
数论一直在寻找数字中的隐藏结构。当数论学家遇到一种似乎无可避免的数字模式时,他们会不断测试这种模式的稳定程度,探索它的边界和极限,从而挖掘出埋藏在数字中的新信息。
在过去20年间,组合与分析数论都有了很大发展,让数学家能够以全新的视角看待许多古老的问题。同时,在计算机的帮助下,以更严格的方式检验证明也成为可能。
喜欢数学心请大家收藏:()数学心
我一枪一剑杀穿大陆 玄灵界都知道我柔弱可怜但能打 我的徒弟不对劲 永恒大陆之命运 农夫是概念神?三叶草了解一下! 穿到八零,我自带锦鲤系统! 哦豁!虐文炮灰不干了! 新人驾到 重生在宝可梦,我的后台超硬 宗门全是美强惨,小师妹是真疯批 暗无 大明:开局气疯朱元璋,死不登基 国运:拥有多重身份的我很合理吧 至尊战皇 快穿之炮灰得偿所愿 在下潘凤,字无双 译文欣赏:博伽瓦谭 穿成商户女摆烂,竟然还要逃难! 摊牌了,我爹是绝顶高手! 混迹娱乐圈的日子
我做梦都没想到老公出轨的对象是个男人这社会给小三的爱足够宽容,为什么不给我的恨一条出路。关键词丈夫的秘密最新章节丈夫的秘密小说丈夫的秘密全文阅读...
林易先是用Crossover在三分线弧顶晃开了防守人的重心,紧接着用山姆高德过掉了补防的阿里扎,哇靠!不看人传球,队友空了!不,队友选择高抛,漂亮的空中接力!等等,怎么有点奇怪呢?因为完成以上动作的是一位七尺大个。这是一段热血沸腾的篮球故事。书友群484028022,欢迎大家进群聊天!...
不牛逼不拉风的低端业余玩家甄浪,被班花拒绝后,偶然得到一块来历神秘的智能芯片。从此,一个游戏界的传奇诞生了。那神一样的操作妖一样的走位魔一样的意识,令无数高端玩家失声惊呼挂了吧?事实证明,甄浪注定是泡不到班花的男人。因为,千姿百态的系花院花校花,风情各异的美女老师女神主播,纷纷闯进了他的生活火爆...
为了救一个小女孩,刚刚毕业的萧奇博士,从美国穿越回了八年前的中国,回到了自己的高中时代。重生之后,萧奇紧接着要做的,就是要帮忙性格淡然又才华出众的父亲,至少从副科级小官连升七级,青云直上,坐到副省级高官的位置,才不枉费了父亲一辈子的正直和善良。对于前世辜负和错过的女孩子,萧奇也下了决心,一定要努力给予她们幸福,不要...
新码的西南崛起已经上传,欢迎各位亲移驾亲临。这是一个令人发指的故事,这是一个令人发指的人。不说他其它的成就,大学刚毕业,他在纳斯达克,就已经有了两家上市公司,不对,他最近又收购了一家上市公司,哦,还在计划收购另一家。身后,还有一大堆投行追赶着,你的这家网站,什么时候上市?广大投资者也说,这样的网站,一定要接受公...
前世黑莲花白蓁被人在车上动了手脚车祸去世,穿越成了合欢宗女修白千羽,开启了和前世开后宫没什么不同的修仙之路。这篇算是某某宗女修炼手札的同人,但是是否玩游戏对看文没啥影响,文不会收费,大家放心追,女主是自设的无心海王型号。挂是挂了修真的名头,其实本文没有着重写女主初期修炼,主要还是着重她成为女王之后的故事。全文分三部分,第一二部分女主一边双修一边把以前给她使绊子的人给除了,手段稍微有点粗暴残忍,结果奇奇怪怪自称系统的东西出现了,告诉她,她已成为了这条世界线的主人,同时她设计把自己也拱成了修真大陆的无冕之王。第三部分开幕,无冕之王并不是这么好当的,一边要均衡各大势力,挑对自己有用的掌握在手里,一边要处理情人们的修罗场。。。。偶尔,系统还会给她出难题,让她暴打外来入侵者。然而白蓁(千羽)对此表示,挺好玩的,再来点。本文可能微微有点女尊倾向,女主床上小淫娃,床下真女王,没心没肺,快乐加倍。有疑似正宫,但是基本不会出现1v1的情况,女主这么强,配一个男的太亏了(啥?)。预警,女主从目前的伦理道德来讲,确实是渣女,而且吸溜子也没想洗。...