书阅啦

手机浏览器扫描二维码访问

第六百四十八章 舒伯特schubert计数(第1页)

Calabi-Yau也在数学中引发了一系列重大的进展,如超弦学家Candelas等人通过研究不同的Calabi-Yau流形给出的相同的超对称共形场论所发现的镜对称猜想。这个猜想由丘成桐、连文豪与我以及Givental独立证明,它解决了代数几何中遗留了上百年的舒伯特(Schubert)计数问题。

大概在格林恩与普列瑟的论文发表一年后,镜对称的下一步发展攫取了数学社群的注目。

坎德拉斯、德拉欧萨(XeniadelaOssa)、保罗·葛林(PaulGreen,马里兰大学)、帕克斯(LindaParks)四人证明了,镜对称可以帮忙解决一个代数几何学与“枚举几何学”(enumerativegeometry)中的难题,这是超过数十年未解的问题。

坎德拉斯团队所研究的是五次三维形的问题,这个问题也称为舒伯特问题,舒伯特(HermannSchubert)是19世纪的德国数学家,他解决了这个难题的第一部分。

所谓舒伯特问题是计数在五次卡拉比—丘流形上“有理曲线”(rationalcurve)的数目,其中有理曲线是像球面一样,亏格为零或没有洞的曲线(实二维曲面)。

计数这些东西听起来像是种古怪的消遣,但如果你是个枚举几何学家,那么这就是你每天的主要工作。

不过这个工作丝毫不简单,绝不像把罐子中的太妃糖倒到桌上数一数而已。

如何计数流形上的物件;如何为问题找到正确架构,使得计数所得到的值有用,百余年来一直是数学家的挑战。

举例来说,如果想让最后计数出来的数值是有限而不是无限的话,我们能计数的对象就必须是紧致空间,而不能像是平面那样的空间。

又例如要计数的是曲线的交点数,这时相切(轻触彼此)的情形就会造成麻烦。

枚举几何学家发展了许多技术来处理这些情况,希望最终的结果是离散的数。

这类问题最早的例子出现于公元前200年左右,希腊数学家阿波罗尼斯(ApolloniusofPerga)曾经提问说:“给定三个圆,有多少圆可以同时和这三个圆相切?”这个问题的一般答案是八,并且可以用直尺与圆规来解答。

但是要解决舒伯特问题,则需要更精密的计算技巧。

数学家处理这个难题的方式是逐步处理,每一步只处理一个固定的“次数”(degree)。

这里所谓次数,指的是描述曲线的多项式中各项的最高次数。

例如4x2-5y3是三次多项式,6x3y2+4x是五次(x和y的次数要加起来),2x+3y-4是一次。如果令2x+3y-4等于零(2x+3y-4=0),就可以定义一条线。

因此这个问题是先取出五次三维形,指定有理曲线的次数,然后问说有多少这样的曲线。

舒伯特解出了次数是一的情况,他证明五次三维形有2875条线。

大概一个世纪之后的1986年,现在任职于伊利诺斯大学的卡兹(SheldonKatz)解出二次的情况,二次有理曲线数等于。

坎德拉斯、德拉欧萨、葛林、帕克斯解决的是三次的情形。不过他们的解法运用了镜对称的想法,因为想要直接在五次卡拉比—丘流形上解这个问题极端困难,但格林恩与普列瑟所构造的镜伴流形,提供了容易得多的解题框架。

事实上,在格林恩与普列瑟关于镜对称的原来论文中,就已经指出这个基本的思路。他们说明汤川耦合这个物理量,可以用两种差异很大的数学公式来表示,一种来自原来的流形,另一种来自镜流形。一个公式牵涉流形中不同次数的有理曲线数,根据格林恩的说法,计算起来绝对是很“恐怖”的事情;另一个公式则牵涉流形的形状,相较起来要简单得多。然而因为这一对镜流形描述的是相同的物理性质,因此结果必须相等。这就像“狗”和“犬”两字看起来不同,描述的却是同一种覆毛的动物。格林恩与普列瑟的论文中有一个方程式,明确说明这两组看起来长相各异的公式其实是相等的。格林恩说:“你可以有一个抽象上已知正确的公式,但是想把方程式计算到适当的精确度以得出数值,却是很大的挑战。我们有方程式,却没有从它提炼出数值的工具。而坎德拉斯和他的合作者发明出这项工具,这是很大的成就,对几何学也有很大的影响。”

19世纪几何学的重要结果之一是凯利(ArthurCayley)与赛尔曼(GeorgeSalmon)的研究,它们证明在所谓的“三次曲面”上共有27条直线。舒伯特后来推广了这个凯利—赛尔曼定理。(

这个想法阐明了镜对称的潜力。我们或许不需要再去烦恼卡拉比—丘空间中曲线数量的计数,因为另外有一种和计数这种苦差事比起来很不一样的计算方式,也可以获得相同的答案。坎德拉斯团队运用这个想法,计算了五次三维形中三次有理曲线的数目,结果答案是。

这章没有结束,请点击下一页继续阅读!

计数这些有理曲线的目的,并不仅止于该数值,而是放眼于整个流形的结构。因为在计数的同时,基本上我们是以成熟的数学技巧在移动这些曲线,直到过程涵盖整个空间。在这样的过程中,我们其实是利用这些曲线来定义这个空间,不管它是五次三维形或其他空间都适用。

计数曲面上的直线或曲线数,是代数几何学与枚举几何学中的常见问题。想知道曲面上的直线的样子,可看看图中这个双直纹双曲面,它是由一系列的直线所完全构成的,而它之所以称为双直纹,是因为曲面上每一点都有两条直线通过。不过对于枚举几何学来说,这样的曲面并不是好例子,因为上面的直线数是无穷多。

这些结果的整体效果,让一个垂死的几何学分支乍然苏醒。根据美国加州大学圣地亚哥分校的数学家马克·格罗斯(MarkGross)的看法,坎德拉斯团队领先运用镜对称的想法,解决了这个枚举几何学的难题,导致整个领域获得重生。“当时这个领域基本上已经死了,”格罗斯说,“当旧问题解决之后,人们有时回头用数学的新技术来计算舒伯特数,但是这些方法并无新意。”然后完全出乎意料的,“坎德拉斯带来了新方法,是远远超出舒伯特所能想象的方法。”物理学家曾经迫切地从数学借用许多材料,然而当数学家倒过来要跟物理借用资源时,他们却要求先看到坎德拉斯方法严格性的更多证明。

喜欢数学心请大家收藏:()数学心

我的徒弟不对劲  摊牌了,我爹是绝顶高手!  哦豁!虐文炮灰不干了!  大明:开局气疯朱元璋,死不登基  玄灵界都知道我柔弱可怜但能打  我一枪一剑杀穿大陆  译文欣赏:博伽瓦谭  重生在宝可梦,我的后台超硬  国运:拥有多重身份的我很合理吧  暗无  穿成商户女摆烂,竟然还要逃难!  宗门全是美强惨,小师妹是真疯批  至尊战皇  新人驾到  永恒大陆之命运  农夫是概念神?三叶草了解一下!  在下潘凤,字无双  混迹娱乐圈的日子  穿到八零,我自带锦鲤系统!  快穿之炮灰得偿所愿  

热门小说推荐
丈夫的秘密

丈夫的秘密

我做梦都没想到老公出轨的对象是个男人这社会给小三的爱足够宽容,为什么不给我的恨一条出路。关键词丈夫的秘密最新章节丈夫的秘密小说丈夫的秘密全文阅读...

篮坛第一外挂

篮坛第一外挂

林易先是用Crossover在三分线弧顶晃开了防守人的重心,紧接着用山姆高德过掉了补防的阿里扎,哇靠!不看人传球,队友空了!不,队友选择高抛,漂亮的空中接力!等等,怎么有点奇怪呢?因为完成以上动作的是一位七尺大个。这是一段热血沸腾的篮球故事。书友群484028022,欢迎大家进群聊天!...

开挂

开挂

不牛逼不拉风的低端业余玩家甄浪,被班花拒绝后,偶然得到一块来历神秘的智能芯片。从此,一个游戏界的传奇诞生了。那神一样的操作妖一样的走位魔一样的意识,令无数高端玩家失声惊呼挂了吧?事实证明,甄浪注定是泡不到班花的男人。因为,千姿百态的系花院花校花,风情各异的美女老师女神主播,纷纷闯进了他的生活火爆...

美梦时代

美梦时代

为了救一个小女孩,刚刚毕业的萧奇博士,从美国穿越回了八年前的中国,回到了自己的高中时代。重生之后,萧奇紧接着要做的,就是要帮忙性格淡然又才华出众的父亲,至少从副科级小官连升七级,青云直上,坐到副省级高官的位置,才不枉费了父亲一辈子的正直和善良。对于前世辜负和错过的女孩子,萧奇也下了决心,一定要努力给予她们幸福,不要...

重生九二之商业大亨

重生九二之商业大亨

新码的西南崛起已经上传,欢迎各位亲移驾亲临。这是一个令人发指的故事,这是一个令人发指的人。不说他其它的成就,大学刚毕业,他在纳斯达克,就已经有了两家上市公司,不对,他最近又收购了一家上市公司,哦,还在计划收购另一家。身后,还有一大堆投行追赶着,你的这家网站,什么时候上市?广大投资者也说,这样的网站,一定要接受公...

【修真】男人就是鼎炉

【修真】男人就是鼎炉

前世黑莲花白蓁被人在车上动了手脚车祸去世,穿越成了合欢宗女修白千羽,开启了和前世开后宫没什么不同的修仙之路。这篇算是某某宗女修炼手札的同人,但是是否玩游戏对看文没啥影响,文不会收费,大家放心追,女主是自设的无心海王型号。挂是挂了修真的名头,其实本文没有着重写女主初期修炼,主要还是着重她成为女王之后的故事。全文分三部分,第一二部分女主一边双修一边把以前给她使绊子的人给除了,手段稍微有点粗暴残忍,结果奇奇怪怪自称系统的东西出现了,告诉她,她已成为了这条世界线的主人,同时她设计把自己也拱成了修真大陆的无冕之王。第三部分开幕,无冕之王并不是这么好当的,一边要均衡各大势力,挑对自己有用的掌握在手里,一边要处理情人们的修罗场。。。。偶尔,系统还会给她出难题,让她暴打外来入侵者。然而白蓁(千羽)对此表示,挺好玩的,再来点。本文可能微微有点女尊倾向,女主床上小淫娃,床下真女王,没心没肺,快乐加倍。有疑似正宫,但是基本不会出现1v1的情况,女主这么强,配一个男的太亏了(啥?)。预警,女主从目前的伦理道德来讲,确实是渣女,而且吸溜子也没想洗。...

每日热搜小说推荐